Spectral Multiplier Theorem for H Spaces Associated with Some Schrödinger Operators

نویسندگان

  • JACEK DZIUBAŃSKI
  • Christopher D. Sogge
چکیده

Let Tt be the semigroup of linear operators generated by a Schrödinger operator −A = ∆− V , where V is a nonnegative polynomial. We say that f is an element of H1 A if the maximal function Mf(x) = supt>0 |Ttf(x)| belongs to L1. A criterion on functions F which implies boundedness of the operators F (A) on H1 A is given.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectral Multipliers for Schrödinger Operators with Pöschl-teller Potential

Spectral multiplier theorem for differential operators plays a significant role in harmonic analysis and PDEs. It is closely related to the study of the associated function spaces and Littlewood-Paley theory. Let H = −∆ + V be a Schrödinger operator on R, where V is real-valued. Spectral multipliers for H have been considered in [22, 16, 14, 15, 3] and [12] for positive potentials. The case of ...

متن کامل

Besov Spaces for Schrödinger Operators with Barrier Potentials

Let H = −△ + V be a Schrödinger operator on the real line, where V = εχ[−1,1]. We define the Besov spaces for H by developing the associated Littlewood-Paley theory. This theory depends on the decay estimates of the spectral operator φj(H) in the high and low energies. We also prove a Mikhlin-Hörmander type multiplier theorem on these spaces, including the L boundedness result. Our approach has...

متن کامل

. A P ] 3 O ct 2 00 6 SPECTRAL MULTIPLIERS FOR SCHRÖDINGER OPERATORS : I

Spectral multiplier theorem for differential operators plays a significant role in harmonic analysis and PDEs. It is closely related to the study of the associated function spaces and Littlewood-Paley theory. Let H = −∆ + V be a Schrödinger operator on R, where V is real-valued. Spectral multipliers for H have been considered in [22, 16, 14, 15, 3] and [12] for positive potentials. The case of ...

متن کامل

Harmonic Analysis Related to Schrödinger Operators

In this article we give an overview on some recent development of Littlewood-Paley theory for Schrödinger operators. We extend the LittlewoodPaley theory for special potentials considered in the authors’ previous work. We elaborate our approach by considering potential in C∞ 0 or Schwartz class in one dimension. In particular the low energy estimates are treated by establishing some new and ref...

متن کامل

Higher Derivations Associated with the Cauchy-Jensen Type Mapping

Let H be an infinite--dimensional Hilbert space and K(H) be the set of all compact operators on H. We will adopt spectral theorem for compact self-adjoint operators, to investigate of higher derivation and higher Jordan derivation on K(H) associated with the following cauchy-Jencen type functional equation 2f(frac{T+S}{2}+R)=f(T)+f(S)+2f(R) for all T,S,Rin K(H).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999